

GCE

Further Mathematics A

Y542/01: Statistics

Advanced GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2021

Y542/01 Mark Scheme October 2021

Annotations and abbreviations

Annotation in RM assessor	Meaning
√and x	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0,B1	Independent mark awarded 0, 1
SC	Special case
۸	Omission sign
MR	Misread
BP	Blank Page
Seen	
Highlighting	
Other abbreviations in	Meaning
mark scheme	
dep*	Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
AG	Answer given
awrt	Anything which rounds to
BC	By Calculator
DR	This question included the instruction: In this question you must show detailed reasoning.

					1	T	
	Questi	on	Answer	Marks	AO	Guidance	
1	(a)		y = 52.7 + 0.251x	B1*	1.1	<i>a</i> in range [0.250, 0.251]	
				B1*	1.1	b correct to 3 SF	
				depB1	1.1	Completely correct including letters	
				[3]		SC: Correct formulae used for a and b	: M1(A1)A1
1	(b)		This quantity is minimised to find best-fit line	B1	2.4	Need "minimised" or "this is its minim	num value" OE
				[1]			
1	(c)		y' = 11.5 + 0.139x	M1	1.1	Apply inverse formula at least once	
			$[y' = \frac{5}{9} \times (their\ a - 32) + \frac{5}{9} \times their\ b]$	A1ft	1.1	All correct, any letters, ft on their y	
				[2]			
2			$E(D) = 2 \times 0.1 + 4 \times 0.3 + 6 \times 0.2$	M1	2.1	NB: a is not needed by this method	Or change
			= 2.6	A1	1.1		0, 2, 4, 6 to
							4, 10, 16, 22
			$E(D^2) = 2^2 \times 0.1 + 4^2 \times 0.3 + 6^2 \times 0.2$ [= 12.4]	M1	1.1	Or $\Sigma(x-\mu)^2p(x)$	and find a
			$Var(D) = 12.4 - 2.6^2$	M1	1.1	$\Sigma p^2 d$ oe gets max M1A1M0M1M1	
			= 5.64	A1	1.1		
			$Var(3D+4) = 9 \times Var(D)$	M1	3.1a	Allow even if their $Var(D) < 0$	
			= 50.76	A1	3.4	SC: $\Sigma(x - \mu)^2 p(x)$: M1A1, $a = 0.4$ M1	
				[7]		M1(use this formula), A1M1A1	
3	(a)	(i)	$P(X \ge 5) - P(X \ge 11) = 0.7^4 - 0.7^{10}$	M1	3.1b	Allow 1 term wrong at either end	Or $pq^4 + \dots + pq^9$
			= 0.212	A1	3.4	awrt 0.212	
				[2]			
		(ii)	$0.7^{n-1} < \frac{1}{3}$, or $0.103 > 0.1 > 0.072$	M1	2.1	Solve $0.3 \times 0.7^{n-1} = 0.1$ or < 0.1 , allow	v inequality error
			$n_{min}=5$	A1	1.1	5 only	
				[2]		SC : 5 without sufficient justification:	B1
3	(b)		1-p	M1	3.1a	Equate correct variance formula to 42	
			$\frac{1-p}{p^2} = 42 \implies 42p^2 + p - 1 = 0$	A1	1.1	Correct simplified quadratic equation	
			$p = \frac{1}{7}$	A1	2.2a		
			,	A1			
			Explicitly reject $p = -\frac{1}{6}$	AI	2.3	SC: if $-\frac{1}{7}$ and $\frac{1}{6}$, allow A1 for explicit	tly rejecting $-\frac{1}{7}$
			E(X) = 7	A1	2.1		

	Questi	on	Answer	Marks	AO	Guidance
				[5]		
4	(a)	(i)	$\hat{\mu} = \overline{x} = 16.8$	B1	1.1	Or exact equivalent
				[1]		
		(ii)	$\frac{48398}{160} - 16.8^2 [= 20.2475]$	M1	1.1	If single formula used, full marks if correct; M0M1 if
			$\frac{-16.8}{160}$ [= 20.2473]			wrong but divisor 159 seen anywhere
			$\times \frac{160}{159}$	M1	1.1	
			=20.3748	A1	1.1	Awrt 20.4, www
				[3]		,
4	(b)		$\overline{x} \pm z \sqrt{\sigma^2 / 160}$	M1	3.3	Any z from Φ^{-1} , 160 needed, allow $\sqrt{\text{errors}}$
			z = 2.576	A1	1.1	Or better, e.g. 2.575829
			(15.88, 17.72)	A1	3.4	Both, 4 sf required by question, www (NB: $\sigma^2 = 20.2475$
				[3]		gives same end-points to 4 SF but this gets M1A1A0)
4	(c)	(i)	Not needed in (a) as $E(X)$ and $Var(X)$ are independent of the	B1	2.4	Mention at least one of $E(X)$ and $Var(X)$ explicitly, or
			distribution	[1]		"not relevant to \overline{X} "
		(ii)	Needed in (b) as parent distribution not stated to be normal	B1	2.4	Must make it clear that two distributions are involved.
				[1]		"n is large" etc: B0

	0 11	<u> </u>	1 3 5 3	1 40	
	Question	Answer	Marks	AO	Guidance
5	(a)	The value of Pearson's pmcc would be changed by (most) such	B1	2.5	Explain effect on Pearson, <i>or</i> not known bivariate normal
		changes.			or not testing for linear correlation
		The value of Spearman's r_s would not be changed as the ranks	B1	2.5	Explain why no effect on Spearman (not "not likely to be
		remain unchanged.	[2]		affected", or "not <i>much</i> affected" or "association not correlation"
5	(b)	H ₀ : no association between ranks of numbers of items	B1	1.1	Don't insist on "population" here, but allow use of ρ_s in
		H ₁ : (positive) association between ranks			both, even if no explanation (not just r_s). Context needed, but don't worry about 1- or 2-tailed here
		Ranks 1 2 3 4 5 6 7 8 9	M1	1.1	·
		4 1 3 2 8 5 9 7 6			
		$\Sigma d^2 = 38$	A1	1.1	
		$6\Sigma d^2$	M1	1.2	
		$r_s = 1 - \frac{6\Sigma d^2}{9(9^2 - 1)}$			
		=0.683	A1	1.1	
		< 0.700	B1	1.1	Compare TS $(-1 \le TS \le 1)$ with 0.7, independent
		Do not reject H ₀ .	M1ft	1.1	ft on TS provided correct formula used, or on CV 0.600
		Insufficient evidence of association between rankings of the	A1ft	2.2b	In context, not too positive. FT on TS only
		items	[8]		SC: 0.600 (2-tailed): B0 M1A0
6	(a)	H ₀ : Data consistent with N(100, 15 ²)	B1	1.1	Allow: "follows N(100, 15 ²)" or "can be modelled by".
		H ₁ : Data not consistent with N(100, 15 ²)	[1]		Parameters not needed. No other alternatives seen!
6	(b)	$P(100 \le X < 110) = 0.2475$ BC			
		Expected frequency = 500×0.2475 [= 123.754]	B1	3.4	Probability needs to be seen
		$(129-123.754)^2$	M1	2.1	
		$\frac{(129-123.754)^2}{123.754} [= 0.222, \mathbf{AG}]$	A1	2.2a	Sufficient working to justify AG , needs 123.754 at least
			[3]		

						T	
	Questi	ion	Answer	Marks	AO	Guidance	
6	(c)		$\Sigma X^2 = 10.5$	B1	1.1		
			$\chi^2(4) = 9.488$ and $10.5 > 9.488$	B1	1.1	Like-with-like comparison needed	
			Reject H_0 .	M1ft	1.1	FT on TS or CV here. Needn't be stated if next line	right
			Significant evidence that data is not consistent with $N(100, 15^2)$.	A1ft	2.2b	FT on TS (but not CV) if method correct.	
				[4]		Wrong CV, e.g. 5.991: B1B0M1A0. No ft on H ₀ /H	\mathfrak{l}_1
6	(d)	(i)	E.g. Too few in $X \ge 110$ or in $X \le 80$, or too many in others, or	B1	3.5b	Any relevant point, needn't refer to values of X^2	
			data truncated, etc	[1]		"Divide into 5 minute groups": B1.	
						"Data discrete": B0. "The variance" (uncalculated	d): B0
		(ii)		B1	3.3	Deal with aspect identified in (i)	
			Black = PAB version,	B 1	3.5c	Basically correct, areas roughly same	
			red = candidate's	[2]		Examples:	
			version			Uses "data discrete" in (i)	В0
						More below 100, so translate to left	В0 В2
							B2
						More above 110 so translate to right	в2 В0
						Divide into 5-minute groups	_
						Variance changed, areas not equal	B1
						Data truncated but worse truncation shown	B0
7	(a)		H ₀ : Two samples are from identical populations	B2	1.1	If no reference to "populations", maximum B1	
	()		H ₁ : Two samples are from populations with different median		1.1	Allow H ₀ : "identical population medians", H ₁ : "not	t
			ratings.			identical populations" or "not identical pop median	
			$R_m = 1 + 2 + 3 + 4 + 5 + 9 + 10 + 11 \ (= 45)$	M1	1.1	"Pupils' opinions have not changed", etc: B2	
			W=45	A1	1.1	If omitted, can still get all other marks	
			$8(8+8+1) - R_m = 91$	B1	2.1		
			$W_{\rm crit} = 49$	B1	1.1		
			Reject H ₀ . Significant evidence that there is a difference in	M1ft	1.1	FT on TS (< 68) or CV	
			median ratings/opinions have changed	A1ft	2.2b	FT on TS only. Allow "increased"	
				[8]		SC: Sign or paired-sample test, max B2 (hypotheses)	
7	(b)		Eliminate the difference between individual pupils' opinions	B1	3.5b		
				[1]		Scores arbitrary: B1 (etc). Not "more powerful test	.,,
7	(c)		A paired-sample signed-rank test would have been used	B1	3.5c	Must mention "paired sample" oe – not just "Wilco	xon

Y542/01 Mark Scheme October 2021

Question		on	Answer	Marks	AO	Guidance
				[1]		signed rank"
7	(d)		0.025×12870	M1	3.1a	$0.05 \times 12870 = 643.5 \text{ M}1$
			= 322	A1	3.2a	321 or 322 or 643 (from 1-tail), must be integer
				[2]		

Y542/01 Mark Scheme October 2021

	Question	n Answer	Marks	AO	Guidance
8	(a)	$f(x) = \frac{1}{2}$	B1	3.3	Stated or implied, e.g. on diagram
		$\int_0^2 \frac{1}{2} a \cos(ax) \mathrm{d}x = 0.3$	M1	3.1a	$\int f(x) a \cos ax dx \& \text{ equated to } 0.3$
		$\int_0^2 \frac{1}{2} a \cos(ax) dx = 0.3$ $\left[\frac{1}{2} \sin(ax)\right]_0^2$	B1	1.1	Correct indefinite integral
		$\frac{1}{2}\sin(2a) = 0.3$	M1	2.1	Correct limits, solve
		a = 0.32175	A1	1.1	Answer, a.r.t. 0.322 (ignore other answers)
			[5]		
8	(b)	$F(y) = \frac{1}{2}y$ $[0 \le y \le 2]$	M1	3.1a	Use their f(y) to obtain CDF
			A1	1.1	Correct F(y) (range need not be stated explicitly)
		$P(Y^2 \le m) = P(0 < Y \le \sqrt{m})$	M1	2.1	Find CDF of Y^2 , allow m^2 instead of \sqrt{m} , or $\pm \sqrt{m}$, here
		$= F(\sqrt{m}) \qquad [= \frac{1}{2}\sqrt{m}]$	A1	1.1	Use $F(y)$ correctly
		$^{1/2}\sqrt{P_{60}} = 0.6$	M1	1.1	Equate to 0.6 and solve, need \sqrt{m} here
		$P_{60} = 1.44$	A1	2.2a	1.44 or exact equivalent
			[6]		

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

